Авиапедия

Энциклопедия Авиации

По алфавиту

Наши спонсоры

Видимость, дальность видимости, — максимальное расстояние, с которого у поверхности земли видны и опознаются неосвещённые объекты (ориентиры) днём и освещённые объекты (световые ориентиры) ночью. В зависимости от направления наблюдения различают горизонтальную, вертикальную и наклонную В. В зависимости от места наблюдения различают В. на земле (В. в начале взлётно-посадочной полосы, в середине, конце и т. д.) и В. в полёте (В. наземных ориентиров при посадке, полёте по маршруту). В. объекта является функцией от прозрачности атмосферы, яркости объекта, уровня освещённости или яркости окружающего фона, угловых размеров объекта. В. в полёте определяется также и условиями наблюдения с летательного аппарата, скоростью его полёта и характеристиками зрения пилота. Так как в разное время суток характеристики освещённости разные, то различают В. днём, в сумерках и ночью.
Прямых методов измерения В. нет. В качестве характеристики В. применяется метеорологическая дальность видимости.
видимость на ВВП, дальность видимости на ВПП, — расстояние, в пределах которого пилот летательного аппарата, находящегося на осевой линии взлётно-посадочной полосы, может видеть маркировочные знаки на поверхности взлётно-посадочной полосы или огни, ограничивающие взлётно-посадочную полосу или обозначающие её осевую линию.
На аэродромах, оборудованными светосигнальными системами, при ограниченной видимости (например, 2000 м и менее) В. на ВВП рассчитывается по специальным таблицам, а при большей видимости за В. на ВВП принимается наблюдаемое значение метеорологической дальности видимости.
На аэродромах, не оборудованных светосигнальными системами, за дальность В. на ВВП принимается: при визуальных наблюдениях днём — видимость дневных ориентиров, в сумерках — видимость, определенная по световым или дневным ориентирам (в зависимости от того, какие дальше видны), ночью — видимость световых ориентиров; при инструментальных наблюдениях днем и в сумерках — измеренное значение видимости, ночью — измеренное значение видимости, переведенное по таблице в видимость по световому ориентиру.
В. на ВВП измеряют и сообщают потребителям (взлетающим или заходящим на посадку летательным аппаратам каждые 30 мин. При уменьшении дальности В. на ВВП до значения, определяемого минимумом погодным для данного аэродрома измерения дальности В. на ВВП и передача данных потребителям осуществляются каждые 15 мин. При дальнейшем уменьшении В. на ВВП измерения проводятся сразу же по поступлении запроса диспетчера.

Метки:, ,

Автоматическое регулирование (синтез систем). Практически все этапы и режимы функционирования летательного аппарата сопровождаются (обеспечиваются) автоматическим регулированием. Регулируются как параметры полёта (в том числе координаты), так и параметры режима силовой установки, систем энергоснабжения, многочисленных других бортовых систем и агрегатов, включая систему жизнеобеспечения. Назначение систем автоматического регулирования (САР) заключается в исполнении (отработке) задающих воздействий в условиях помех (возмущающих воздействий). Задающие воздействия поступают от старших уровней системы управления, в том числе экипажа, или программируются заранее на стадии производства (монтажа) системы или её предполётной подготовки. От точности отработки задающих воздействий во многом зависят технико-экономические показатели и безопасность полётов. Поэтому качеству автоматического регулирования уделяется большое внимание. Используются все известные принципы регулирования: по отклонению (с обратной связью), по возмущению (с разомкнутым контуром), комбинированное (сочетание двух предыдущих принципов), адаптивное и др.
Одним из путей обеспечения достаточно высокого качества процессов регулирования является синтез САР на стадии проектирования. Синтез САР заключается в определении структуры и параметров (коэффициентов) системы, обеспечивающих заданные показатели качества регулирования. Синтез САР определенным образом связан с анализом САР и в простейшей форме может базироваться на анализе множества вариантов, задаваемых произвольным образом. Однако таким путём практически невозможно достигнуть оптимальных решений.
На всех этапах развития авиации и ракетно-космической техники для синтеза бортовых САР привлекались наиболее передовые для своего времени методы теории управления. На ранних этапах это были в основном методы теории устойчивости движения. Система «регулятор — регулируемый объект» проектировалась так, чтобы обеспечить устойчивость заданного состояния, на этом предварительный синтез заканчивался. В дальнейшем широкое распространение получили частотные методы синтеза САР — структурные динамические схемы контуров регулирования. САР рассматриваются как совокупность элементарных динамических звеньев однонаправленного действия, образующих взаимосвязанные или автономные контуры. Строгое обоснование частотный синтез имеет для так называем линейных систем. Для каждого элементарного линейного звена известны частотные характеристики, в том числе логарифмические частотные характеристики, правила определения частотных характеристик заданного соединения звеньев, а также критерии устойчивости и качества процессов регулирования, сформулированные в терминах частотных характеристик. На этой основе строятся инженерные методики синтеза контуров, широко применяемые и в 90?х гг. На базе этих методов обычно осуществляется предварительный синтез на начальной стадии проектирования САР. Последующие этапы синтеза выполняются с помощью электронно-вычислительных машин. В ходе математического, а на заключительной стадии и полунатурного (с реальной аппаратурой управления) моделирования уточняются структура и значения параметров синтезируемой системы, Процедуры синтеза посредством электронно-вычислительных машин во многом могут быть формализованы (автоматический поиск оптимальных структур и значений параметров) и являются основным направлением практического синтеза САР.
Начиная с 60?х гг. широкое развитие и применение получила современная теория управления, базирующаяся на описании процессов в так называем пространстве состояний. Качество управления, критерии оптимизации в этой теории задаются в виде функционалов, как и в классическом вариационном исчислении, Эта теория явилась основой решения задач синтеза САР как в детерминированной (аналитическое конструирование регуляторов), так и стохастической (вероятностной) постановке, как при полной, так и при ограниченной информации о математической модели регулируемого процесса (синтез оптимальных адаптивных САР). Современная теория объединяет в единое целое теории фильтрации (оценивания), идентификации и собственно регулирования. Она позволяет синтезировать как непрерывные, так и дискретные алгоритмы, удобные для реализации в цифровых вычислительных машинах.
В связи с совершенствованием и широким применением бортовых цифровых вычислительных управляющих систем, внедрением методов современной теории управления синтез бортовых САР всё больше трансформируется в разработку математического обеспечения. На эту разработку приходится всё большая доля затрат при создании перспективных систем.

Метки:, , ,

Автоматизированная система весового контроля (АСВК) — подсистема управления ходом разработки летательного аппарата в системах автоматизированного проектирования (САПР), предназначенная для обеспечения проектных значений весовых характеристик летательного аппарата. АСВК осуществляет сбор, хранение, обработку и выдачу информации о состоянии разработки и значениях весовых и массово-инерционных характеристик агрегатов, узлов, о прогнозируемой массе летательного аппарата в целом. АСВК оперирует следующими значениями массы изделия: лимитным, чертёжным, фактическим, текущим и др. (см. Весовой контроль), АСВК является организационно-технической системой и включает технические средства, математическое обеспечение электронно-вычислительных машин и нормативно-техническую документацию. Техническими средствами АСВК служат универсальная электронно-вычислительная машина, имеющая накопители на магнитных дисках и лентах ёмкостью, достаточной для хранения информации по всем изделиям, выпускаемым данным КБ, и необходимые периферийные устройства ввода и вывода данных. Математическое обеспечение включает программы формирования банка данных, расчёта массово-инерционных характеристик и программ вывода итоговых сводок АСВК. Нормативно-техническая документация АСВК содержит перечень и порядок исполнения всех работ, связанных с оформлением, прохождением и изменением чертёжно-конструкторской и производств, документации, а также специальной документации АСВК, вводимой инструкцией по АСВК данного предприятия. Наличие оперативной и достоверной информации о текущем состоянии весовых и массово-инерционных характеристик летательного аппарата и его отдельных элементов в ходе проектирования и изготовления позволяет руководителю проекта принять своевременные меры для обеспечения проектных значений весовых характеристик.

Метки:, , ,