Авиапедия

Энциклопедия Авиации

По алфавиту

Наши спонсоры

Зона испытательных полётов — воздушное пространство над сухопутной или водной территорией, предназначенное для проведения испытательных полётов. Размеры зон, их удаление от аэродрома устанавливаются в зависимости от типа летательного аппарата и условий базирования, а также с учётом требований безопасности (при непрерывном радиолокационном контроле — не менее 10 км от границ соседних зон и воздушных трасс). З. и. п., как правило, находятся под непрерывным радиолокационным контролем, содержат специальные маршруты и измерительные трассы, полёты по которым обеспечиваются наземными радиотехническими и электронно-оптическими средствами управления воздушным движением, а также средствами внешнетраекторных и радиотелеметрических измерений. В З. и. п. иногда организуются полигоны, над которыми проводятся испытания и отработка средств спасения, вооружения, сбрасываемой с борта техники.

Метки:,

«Земной резонанс» вертолёта — самовозбуждающиеся связанные колебания лопастей винта вертолёта в плоскости его вращения и фюзеляжа или другой поддерживающей винт, конструкции, вызывающие перемещения втулки винта в плоскости его вращения. Колебания лопастей происходят из-за наличия вертикальных шарниров или собственно упругости (при бесшарнирном креплении), перемещения втулки в результате колебаний фюзеляжа вертолёта на шасси или упругих деформаций конструкции. Термин «З. р.» возник в связи с тем, что разрушения вертолётов и автожиров наиболее часто возникали на земле при колебаниях на шасси.
При работе на месте для одновинтового вертолёта возможны 2 зоны неустойчивости, соответствующие двум частотам собственно поперечных колебаний фюзеляжа на шасси: p1 ? 0,3{{?}} и p2 ? {{?}}, где {{?}} — максимальная частота вращения винта. Устранение «З. р.» в первом случае достигается одновременным увеличением демпфирования лопастей винта и шасси. Во втором случае, когда амортизаторы шасси не работают, увеличением демпфирования только в вертикальных шарнирах зона неустойчивости не устраняется. Достаточный запас от {{?}} до нижней границы зоны неустойчивости обеспечивается за счёт подбора частот собственно колебаний фюзеляжа и лопастей.
На режимах движения вертолёта по земле (руление, разбег, пробег) появление «З. р.» возможно из-за снижения частот собственно колебаний в результате изменения динамической реакции катящегося пневматика. «З. р.» может возникнуть также при колебаниях вертолёта с отрывом пневматиков от земли. Появление «З. р.» возможно и в полёте, если частоты собственно колебаний конструкции меньше {{?}}. При этом перемещения втулки в плоскости вращения вызываются упругими колебаниями фюзеляжа (при продольной схеме вертолёта), вала верхнего винта (при соосной схеме), крыла или фермы (при поперечной схеме), хвостовой балки (при одновинтовой схеме с рулевым винтом, имеющим шарниры, аналогичные вертикальным шарнирам несущего винта).
При расчётном определении границ зон неустойчивости движение лопастей может быть описано системой однородных линейных дифференциальных уравнений 2?го порядка с периодичным коэффициентом. При числе лопастей винта n{{?}}3 они сводятся к уравнениям с постоянным коэффициентом Для n = 2 характерно наличие дополнительных зон неустойчивости. Исследование «З. р.» для них затруднено, так как переход к уравнениям с постоянными коэффициентами неизвестен.
Для подтверждения отсутствия «З. р.» проводят специальные испытания вертолёта, при которых обследуют все критические режимы его работы.

Метки:,

Запуск двигателя газотурбинного — неустановившийся режим работы газотурбинного двигателя, характеризуемый процессом раскрутки его ротора (роторов) от неподвижного состояния или режима авторотации до выхода двигателя на режим малого газа или минимально установившийся режим работы (для двигателей, не имеющих режима малого газа). Различают несколько разновидностей З. д. в зависимости от климатических, высотно-скоростных условий, способа проведения и исходного режима. Так, например, в полёте запуск может выполняться с режима авторотации и с режима выбега — процесса торможения вращения («встречный» запуск).
З. д. оценивается временем с момента нажатия на кнопку запуска (переключения тумблера, перевода рычага управления двигателем) до момента достижения частоты вращения, равной 90—95% от её значения на конечном режиме (например, малом газе). Запуск современных турбореактивного двигателя на земле в стандартных атмосферных условиях выполняется за 20—30 с. В экстремальных климатических условиях допускается увеличение времени З. д. примерно на 50%. Для З. д. в полёте требуется такое же время. При этом область режимов полёта, в которой должен обеспечиваться надёжный З. д., ограничивается минимальной и максимальной скоростями полёта на режимах снижения самолёта и максимальной высотой полёта, которая должна превышать предельную высоту крейсерского режима полёта самолёта.
Продолжительность З. д. зависит от условий его проведения, коэффициента динамичности двигателя, мощности и характеристики пускового устройства, программы подачи топлива, определяющей температуру газа перед турбиной, запасов устойчивой работы компрессора и камеры сгорания, передаточного отношения между пусковым устройством и ротором двигателя и т. п. При таком большом числе факторов, оказывающих влияние на З. д., важное значение приобретает оптимизация характеристик элементов системы запуска и чёткая синхронизация их. Для этой цели используются специальные устройства, работающие по программному, функциональному или смешанному принципам.

Метки:,

Заправка летательного аппарата — заполнение ёмкостей летательного аппарата топливом, маслом, другими техническими жидкостями и водой, а также сжатыми газами («зарядка») в целях обеспечения работы силовой установки и других систем летательного аппарата. За исключением случая заправки топливом в полёте З. летательного аппарата производится в процессе подготовки его к полёту, а также при проведении регламентных работ и ремонта (например, пополнение или замена рабочей жидкости в гидросистеме) с помощью специальных средств наземного обслуживания, к которым относятся топливозаправщики, оборудование централизованной З., масло- и водозаправщики и т. д.
Применяемое для З. летательного аппарата топливом подвижное (топливозаправщики) и стационарное (системы централизованной З.) оборудование предназначается для доставки топлива к местам З. и закачки его с большой (до 1000 л/мин и более) подачей в баки летательного аппарата; при этом одновременно осуществляются операции, необходимые для соблюдения предусмотренной- паспортом кондиции заправляемого топлива (фильтрация, водоотделение), и контролируется его количество. Подвижный топливозаправщик представляет собой цистерну, смонтированную на автомобильном шасси или прицепе (полуприцепе) вместе с агрегатами для З. летательного аппарата топливом: насосом (с приводом от двигателя автомобиля или автономным), приёмо-раздаточной арматурой, системой фильтров, контрольно-измерительной аппаратурой, системой управления и средствами обеспечения безопасности (защита от пожара и от воздействия электростатических разрядов).
В комплект оборудования централизованной З. входят: станция, обеспечивающая приём топлива из стационарных аэродромных резервуаров, фильтрацию и регулируемую подачу топлива в систему раздаточных трубопроводов; сеть раздаточных трубопроводов, подводящих топливо к стационарным гидрантным колонкам; передвижные или стационарные заправочные агрегаты, обеспечивающие автоматическую дозировку подачи дополнительно профильтрованного топлива в баки летательного аппарата, а также возможность регулирования его давления и скорости заправки, Преимущество системы централизованной З. летательного аппарата топливом — значительное (в несколько раз) снижение стоимости доставки его от расходного склада горюче-смазочных материалов до баков летательного аппарата, а также лучшее очищение топлива от вредных примесей.
Непосредственно в баки летательного аппарата топливо подаётся через один или несколько раздаточных рукавов, снабжённых пистолетами для открытой З. (через верхние заправочные горловины баков) или специальными наконечниками для закрытой З. (под давлением с герметичным присоединением рукавов к нижней или верхней заправочным горловинам).
З. летательного аппарата топливом под давлением имеет значительные эксплуатационные преимущества перед открытой З. так как, она более удобна и существенно сокращает время З., особенно при большой вместимости топливной системы летательного аппарата; кроме того, исключается возможность попадания в баки посторонних включений, улучшаются условия пожарной безопасности и т. д. Однако необходимое для применения З., под давлением дополнительное оборудование топливной системы летательного аппарата (в том числе предохраняющее баки от повышения допустимого давления) усложняет конструкцию и приводит к некоторому увеличению её массы.

Метки:,

Запас топлива —количество топлива на борту летательного аппарата, которое может быть полностью израсходовано двигателями в полете. В З. т. не включается топливо, расходуемое двигателями на земле от момента их запуска до начала разбега, и невырабатываемое в полёте топливо. При подготовке к полету потребный З. т. рассчитывается в соответствии с Руководством по летной эксплуатации летательного аппарат данного типа и подразделяется на расходуемое топливо, необходимо для выполнения полёта от аэродрома вылета до аэродрома назначения по установленному маршруту или схеме, и на аэронавигационный запас, предназначенный как для компенсации повышения расхода топлива, вызванного случайными причинами (в том числе изменениями условий полета), так и для обеспечения возможности продлить полёт до наиболее удалённого запасного аэродрома, предусмотренного полётным заданием

Метки:,

Закрылок — профилированный, обычно отклоняющийся элемент механизации крыла, расположенный вдоль его задней кромки и предназначенный для улучшения аэродинамических характеристик летательного аппарата. З. используются при взлёте и посадке для увеличения подъёмной силы крыла, а также в полёте для улучшения манёвренных характеристик летательного аппарата. З. могут быть установлены по всему размаху крыла или по его частям (в этом случае различают внутренние З. используемые в основном при взлёте и посадке, и внешние З. используемые обычно при манёврах летательного аппарата). Однако для З. занимающих часть крыла, существенны пространственные эффекты, которые снижают их эффективность и приводят к увеличению индуктивного сопротивления.
При использовании З. увеличение подъёмной силы происходит за счёт изменения поля течения около крыла, обусловленного одной или несколькими из следующих причин: изменением геометрии профиля путём увеличения кривизны профиля; увеличением площади несущей поверхности (например, З. в форме щитков); воздействием на пограничный слой с целью затягивания его отрыва (например, Коандэ закрылок); интерференцией аэродинамической З. с основной частью крыла (например, щелевой закрылок, Фаулера закрылок); реакцией выдуваемой струи газа (например, струйный закрылок).
З. различных схем показаны на рис. Выпуск и уборка З. могут производиться автоматически или по команде из кабины лётчика с помощью гидро-, пневмо- и электроприводов. Первые самолёты с механизацией задней кромки крыла были построены в 20?х гг. В СССР З. впервые были установлены на самолётах Р-5, Р-6, РГ-I. Более широко З. стали применяться в 30?х гг., когда получила распространение схема свободнонесущего моноплана. Конструкция З. в общем аналогична конструкции крыла.
Для исследования аэродинамических характеристик З. и изучения влияния на его эффективность различных параметров моделирование течения обычно проводится в рамках теории плоского движения идеальной жидкости. Однако на работу З. большое влияние оказывают вязкость среды и пространственность (трёхмерность) течения. Моделирование таких течений очень сложно, поэтому аэродинамические характеристики З. определяются, как правило, экспериментальным путём.

Метки:,

Знаки опознавательные — 1) З. о. гражданских самолётов (вертолетов) — обозначения, позволяющие определить национальную принадлежность летательного аппарата; обычно состоят из национальных (государственных) и регистрационных знаков. Стандарты, касающиеся этих знаков, содержатся в Приложении 7 к Чикагской конвенции 1944. Они были впервые приняты в 1949, в том же году вступили в силу. Национальные и регистрационные знаки летательных аппаратов представляют собой группы символов. Национальный знак выбирается из серии национальных знаков, включённых в позывные радиосвязи, которые выделяются государству регистрации летательных аппаратов Международным союзом электросвязи. Регистрационный знак состоит из букв, цифр или комбинации букв и цифр и присваивается летательному аппарату государством регистрации, Так, в качестве национальных знаков в США используется буква N, во Франции — F, в Испании — EC. Воздушным кодексом СССР предусматривалось присвоение гражданскому летательному аппарату государственно-регистрационного З. о., который наносился на летательный аппарат по правилам, устанавливавшимся Министерством гражданской авиации СССР. Гражданский летательный аппарат обозначались буквами русского алфавита «СССР». На летательный аппарат, предназначенных для медико-санитарной службы, наносится также изображение Красного Креста или Красного Полумесяца. Национальный и регистрационный знаки должны быть чётко видимы и хорошо различимы. Они наносятся краской или любым другим способом, обеспечивающим высокую степень прочности, на нижнюю поверхность крыла или на боковые стороны фюзеляжа между крыльями и хвостовым оперением либо на вертикальные плоскости хвостового оперения. Знаки на крыльях имеют высоту не менее 50 см, на фюзеляже и на вертикальных поверхностях хвостового оперения — не менее 30 см. Все символы, составляющие знаки, выполняются сплошными линиями и таким цветом, который создаёт хорошую контрастность с фоном.
2) З. о. военных самолётов (вертолётов) — обозначения, позволяющие определить национальную принадлежность военного летательного аппарата, а также принадлежность летательного аппарата к тому или иному виду вооруженных сил, объединению, соединению, части (подразделению). Военно-воздушные силы каждой страны имеют свою систему знаков. З. о. национальной принадлежности имеют вид геометрических фигур (кругов, квадратов, полос, звёзд, крестов и др.) различной окраски, которые наносятся на крылья, боковые поверхности (борта) фюзеляжа, хвостовое вертикальное оперение самолёта. З. о. принадлежности к виду вооруженных сил имеются на летательном аппарате в большинстве государств. Например, знак US AIR FORCE (Военно-воздушные силы США) или US NAVY (Военно-морские силы США) наносится на обоих бортах фюзеляжа летательного аппарата, сверху на правой и снизу на левой поверхностях крыльев. Авиация Военно-морских сил Великобритании имеет на фюзеляжах самолётов знак ROYAL NAVY. Знаки принадлежности к объединению, соединению, части (подразделению) включают присвоенную им эмблему и группу условных цифр.

Метки:

Зенитная управляемая ракета (ЗУР) — крылатая ракета класса «поверхность (земля, море) — воздух»; беспилотный управляемый летательный аппарат с реактивным двигателем для поражения с высокой эффективностью воздушных целей всех типов (самолёт, вертолёт, аэростат, дирижабль, крылатая ракета и др.); составная часть зенитного ракетного комплекса. К ЗУР относятся также противоракеты, предназначенные для поражения баллистических ракет.
Основные элементы ЗУР: планёр (корпус и аэродинамические поверхности), бортовая аппаратура управления и наведения (БАУН), взрыватели, боевая часть, реактивная двигательная установка. Боевая часть, БАУН и двигательная установка размещаются в корпусе. Аэродинамические поверхности планёра служат для удержания ЗУР на траектории наведения (или для изменения траектории полёта) и стабилизации ЗУР. В ЗУР некоторых типов, предназначенных для поражения воздушных целей на больших высотах (30—40 км и более), в дополнение к аэродинамическому управлению или вместо него применяются газодинамические рули. Аэродинамические схемы ЗУР могут быть различными (например, «нормальная», «утка»), траектория полёта ЗУР, а также состав и принцип действия БАУН определяются методом и способом наведения. В ЗУР используются следующие способы наведения: теленаведение (командное и по лучу), самонаведение (активное, полуактивное, пассивное) и их сочетание (комбинированное наведение). БАУН совместно с наземными средствами или самостоятельно-(в зависимости от способа наведения) непрерывно определяет взаимное положение ЗУР и цели, рассчитывает отклонения от заданной траектории и вырабатывает команды управления. Основу БАУН во всех вариантах составляет автопилот, включающий датчики, преобразовательно-усилительные устройства и рулевые приводы. Боевая часть ЗУР может быть обычной или ядерной. Обычные боевые части ЗУР по принципу действия делятся на фугасные, осколочные, фугасно-осколочные, кумулятивные и др. Они могут быть направленного действия (в основном боевые части осколочного и фугасно-осколочного типов). Подрыв заряда осуществляется в районе цели с помощью взрывателя неконтактного типа, который по принципу действия может быть активного, полуактивного или пассивного типа. В отдельных типах ЗУР, предназначенных для поражения целей на небольших дальностях, могут устанавливаться контактные взрыватели. В двигательных установках ЗУР используются твердотопливные или жидкостные ракетные двигатели. Могут применяться также реактивные двигатели и других типов. По числу ступеней ЗУР бывают одно- и -двухступенчатые, а противоракеты — и трехступенчатые. Современные ЗУР противосамолётной обороны имеют стартовую массу от нескольких кг до нескольких т, максимальная скорость полёта до 1700 м/с, дальность полёта до 700 км, выcота полёта 30—40 км и более.
В СССР первая ЗУР была создана и испытана к середине 1948. В конце 40?х — начале 50?х гг. появились первые ЗУР и в ряде других стран (США, Великобритания, Франция).

Метки:,

Звуковой удар — акустическое явление, возникающее при распространении а атмосфере Земли ударных волн, создаваемых самолётом при полёте со сверхзвуковой скоростью. Область распространения возмущений от летящего со сверхзвуковой скоростью летательного аппарата в атмосфере обычно ограничена поверхностью головной волны от носика фюзеляжа, за которой следуют ударные волны разной интенсивности от другие частей самолёта (от крыла, хвостового оперения, мотогондол и т. д.). Поскольку более интенсивные ударные волны распространяются в атмосфере с большей скоростью, то они догоняют менее интенсивные, сливаясь с ними по мере удаления от летательного аппарата, и в дальней зоне (или на поверхности Земли при полёте на сравнительно больших высотах) в атмосфере остаются только 2 ударные волны: головная и хвостовая с линейным профилем падения давления между ними , что обычно воспринимается как двойной хлопок. Это так называем N-образная волна давления.
З. у. зависит от формы летательного аппарата, его размеров, режима полёта, состояния атмосферы, рельефа местности и т. д. Это явление не поддаётся полному моделированию в лабораторных условиях. Влияние отдельных факторов на З. у. изучается экспериментально при полётах сверхзвуковых самолётов и в аэродинамических трубах. Влияние З. у. на человека и животных изучается на специальных экспериментальных установках, имитирующих З. у. Теоретические методы исследования З. у. основаны главным образом на геометрической акустике, но с учётом нелинейных эффектов. Согласно теории З. у. возмущения, исходящие от самолёта в какой-либо момент времени, распространяются вдоль звуковых (или характеристических) лучей, образующих в пространстве некоторую коническую поверхность (см. Маха конус). Вследствие неоднородности атмосферы лучи искривляются, так что некоторые из них уходят в верхние слои атмосферы, не достигая поверхности Земли. Благодаря отражению лучей зона слышимости З. у. ограничена в боковом направлении по отношению к трассе полёта. Ширина этой зоны в зависимости от состояния атмосферы и режима полёта самолёта составляет 8—10 высот полёта. Отражением лучей объясняется также отсутствие З. у. на поверхности Земли при полёте самолёта с небольшой сверхзвуковой скоростью. При разгоне, развороте к других манёврах самолета возможно образование каустики, вблизи которой происходит локальное повышение избыточного давления из-за наложения волн давления друг на друга.

Метки:,

Звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M{{?}}, несколько превышающих критическое число M*. Причина состоит в том, что при числах M{{?}} > M* наступает волновой кризис, сопровождающийся появлением волнового сопротивления. Коэффициент волнового сопротивления летательных аппаратов очень быстро возрастает с ростом числа M, начиная с M{{?}} = M*.
Наличие З. б. затрудняет достижение скорости полёта, равной скорости звука, и последующего перехода к сверхзвуковому полёту. Для этого оказалось необходимым создать самолёты с тонкими стреловидными крыльями, что позволило значительно снизить сопротивление, и реактивными двигателями, у которых с ростом скорости тяга возрастает.
В СССР скорость, равная скорости звука, впервые была достигнута на самолёте Ла-176 в 1948.

Метки:, ,