Авиапедия

Энциклопедия Авиации

По алфавиту

Наши спонсоры

Запуск двигателя газотурбинного — неустановившийся режим работы газотурбинного двигателя, характеризуемый процессом раскрутки его ротора (роторов) от неподвижного состояния или режима авторотации до выхода двигателя на режим малого газа или минимально установившийся режим работы (для двигателей, не имеющих режима малого газа). Различают несколько разновидностей З. д. в зависимости от климатических, высотно-скоростных условий, способа проведения и исходного режима. Так, например, в полёте запуск может выполняться с режима авторотации и с режима выбега — процесса торможения вращения («встречный» запуск).
З. д. оценивается временем с момента нажатия на кнопку запуска (переключения тумблера, перевода рычага управления двигателем) до момента достижения частоты вращения, равной 90—95% от её значения на конечном режиме (например, малом газе). Запуск современных турбореактивного двигателя на земле в стандартных атмосферных условиях выполняется за 20—30 с. В экстремальных климатических условиях допускается увеличение времени З. д. примерно на 50%. Для З. д. в полёте требуется такое же время. При этом область режимов полёта, в которой должен обеспечиваться надёжный З. д., ограничивается минимальной и максимальной скоростями полёта на режимах снижения самолёта и максимальной высотой полёта, которая должна превышать предельную высоту крейсерского режима полёта самолёта.
Продолжительность З. д. зависит от условий его проведения, коэффициента динамичности двигателя, мощности и характеристики пускового устройства, программы подачи топлива, определяющей температуру газа перед турбиной, запасов устойчивой работы компрессора и камеры сгорания, передаточного отношения между пусковым устройством и ротором двигателя и т. п. При таком большом числе факторов, оказывающих влияние на З. д., важное значение приобретает оптимизация характеристик элементов системы запуска и чёткая синхронизация их. Для этой цели используются специальные устройства, работающие по программному, функциональному или смешанному принципам.

Метки:,

Заправка летательного аппарата — заполнение ёмкостей летательного аппарата топливом, маслом, другими техническими жидкостями и водой, а также сжатыми газами («зарядка») в целях обеспечения работы силовой установки и других систем летательного аппарата. За исключением случая заправки топливом в полёте З. летательного аппарата производится в процессе подготовки его к полёту, а также при проведении регламентных работ и ремонта (например, пополнение или замена рабочей жидкости в гидросистеме) с помощью специальных средств наземного обслуживания, к которым относятся топливозаправщики, оборудование централизованной З., масло- и водозаправщики и т. д.
Применяемое для З. летательного аппарата топливом подвижное (топливозаправщики) и стационарное (системы централизованной З.) оборудование предназначается для доставки топлива к местам З. и закачки его с большой (до 1000 л/мин и более) подачей в баки летательного аппарата; при этом одновременно осуществляются операции, необходимые для соблюдения предусмотренной- паспортом кондиции заправляемого топлива (фильтрация, водоотделение), и контролируется его количество. Подвижный топливозаправщик представляет собой цистерну, смонтированную на автомобильном шасси или прицепе (полуприцепе) вместе с агрегатами для З. летательного аппарата топливом: насосом (с приводом от двигателя автомобиля или автономным), приёмо-раздаточной арматурой, системой фильтров, контрольно-измерительной аппаратурой, системой управления и средствами обеспечения безопасности (защита от пожара и от воздействия электростатических разрядов).
В комплект оборудования централизованной З. входят: станция, обеспечивающая приём топлива из стационарных аэродромных резервуаров, фильтрацию и регулируемую подачу топлива в систему раздаточных трубопроводов; сеть раздаточных трубопроводов, подводящих топливо к стационарным гидрантным колонкам; передвижные или стационарные заправочные агрегаты, обеспечивающие автоматическую дозировку подачи дополнительно профильтрованного топлива в баки летательного аппарата, а также возможность регулирования его давления и скорости заправки, Преимущество системы централизованной З. летательного аппарата топливом — значительное (в несколько раз) снижение стоимости доставки его от расходного склада горюче-смазочных материалов до баков летательного аппарата, а также лучшее очищение топлива от вредных примесей.
Непосредственно в баки летательного аппарата топливо подаётся через один или несколько раздаточных рукавов, снабжённых пистолетами для открытой З. (через верхние заправочные горловины баков) или специальными наконечниками для закрытой З. (под давлением с герметичным присоединением рукавов к нижней или верхней заправочным горловинам).
З. летательного аппарата топливом под давлением имеет значительные эксплуатационные преимущества перед открытой З. так как, она более удобна и существенно сокращает время З., особенно при большой вместимости топливной системы летательного аппарата; кроме того, исключается возможность попадания в баки посторонних включений, улучшаются условия пожарной безопасности и т. д. Однако необходимое для применения З., под давлением дополнительное оборудование топливной системы летательного аппарата (в том числе предохраняющее баки от повышения допустимого давления) усложняет конструкцию и приводит к некоторому увеличению её массы.

Метки:,

Запас топлива —количество топлива на борту летательного аппарата, которое может быть полностью израсходовано двигателями в полете. В З. т. не включается топливо, расходуемое двигателями на земле от момента их запуска до начала разбега, и невырабатываемое в полёте топливо. При подготовке к полету потребный З. т. рассчитывается в соответствии с Руководством по летной эксплуатации летательного аппарат данного типа и подразделяется на расходуемое топливо, необходимо для выполнения полёта от аэродрома вылета до аэродрома назначения по установленному маршруту или схеме, и на аэронавигационный запас, предназначенный как для компенсации повышения расхода топлива, вызванного случайными причинами (в том числе изменениями условий полета), так и для обеспечения возможности продлить полёт до наиболее удалённого запасного аэродрома, предусмотренного полётным заданием

Метки:,

Ракетно-турбинный двигатель (РТД) — комбинированный двигатель, в котором сочетаются элементы турбореактивного и ракетного двигателей. В РТД компрессор, сжимающий атмосферный воздух, приводится во вращение турбиной, работающей на продуктах сгорания газогенератора (ГГ), представляющего собой ракетный двигатель. Основные разновидности РТД: по принципиальной схеме — РТД со смешением потоков продуктов сгорания ГГ и воздуха за компрессором — РТДсм (рис. 1), РТД с раздельными потоками — РТДр (рис. 2); по типу используемого топлива — РТД жидкого топлива (РТДЖ), РТД твёрдого топлива (РТДТ), РТД газообразного топлива (РТДГ), РТД гибридного топлива и воздушно-реактивные РТД, использующие в качестве топлива горючее при работе ГГ ракетного двигателя на газифицированном и подогретом горючем или на переобогащённой смеси воздух — горючее (РТД «пароводородной» схемы — РТДп, РТД с системой ожижения части воздуха, отбираемого за компрессором, — РТДож и др.); по конструктивной схеме — РТД с прямой связью роторов компрессора и турбины, РТД с редуктором, понижающим частоту вращения ротора компрессора по сравнению с частотой вращения ротора турбины. Термодинамический цикл РТД, как и любого комбинированного двигателя, состоит из двух циклов: генераторного ракетного цикла (цикла ГГ) и основного (рабочего) воздушного цикла с обменом энергии между ними и передачей механической работы (в РТДр) или работы и теплоты (в РТДсм). Относительная работа и термический кпд {{h1}} основного цикла РТД выше соответствующих параметров циклов форсированных ТРД (или ТРДД) благодаря увеличению степени повышения давления в цикле ГГ и степени теплоподвода, что при использовании одного и того же топлива обусловливает тягово-экономические преимущества РТД перед форсированными ТРД (или ТРДД). Удельная масса РТД ниже, чем ТРДДФ, вследствие увеличения давления в цикле ГГ и уменьшения размеров ГГ. Высотно-скоростные характеристики РТД, использующего ракетное топливо, занимают промежуточное положение между характеристиками ЖРД и ТРДФ (или ТРДДФ). РТД имеют преимущества перед смешанной силовой установкой, состоящей из ТРДФ (или ТРДДФ) и ЖРД, обеспечивая при равных с ней значениях тяги более низкие удельные расходы топлива, а при одинаковых удельных расходах топлива обладают лучшими габаритными и высотными показателями.

Метки:,

Заправка топливом в полете — процесс передачи топлива одним самолётом (заправщик) другому (заправляемый в полёте). Установка оборудования для З. т. в п. на летательный аппарат позволяет значительно увеличить дальность (продолжительность) полёта, что существенно расширяет его возможности. Наиболее широко З. т. в п. применяется на боевых и военно-транспортных самолётах. Используется также на вертолётах некоторых типов. Под системой З. т. в п. понимается совокупность агрегатов, коммуникаций, устройств и приборов, предназначенных для передачи и приёма топлива в полёте, его распределения по бакам (или их опорожнения в установленной очерёдности), управления процессом заправки и контроля за ним. В СССР заправка самолёта топливом в полёте впервые была осуществлена в 193З
С 50—60?х гг. З. т. в п. получила распространение во многие странах.
Наиболее распространены схемы З. т. в п., условно называют «шланг-конус» (рис. 1) и «телескопическая штанга» (рис. 2). При заправке по схеме «шланг-конус» из самолёта-заправщика выпускается гибкий шланг, на конце которого укреплено тело конической формы (для стабилизации шланга в полёте и осуществления контакта с приёмной штангой заправляемого самолёта). Контактирование осуществляет лётчик заправляемого самолёта, приближаясь к самолёту-заправщику с относительной скоростью 1—2 м/с до контакта штанги с конусом. После этого штанга фиксируется в конусе замками, срабатывает запорное устройство и начинается процесс передачи топлива заправляемому самолёту. З. т. в п. по схеме «шланг-конус» имеет 2 основных варианта компоновки агрегатов: встроенный — с размещением оборудования в фюзеляже заправщика и подвесной — с размещением под консолями крыла или на фюзеляже заправщика. Характерной особенностью и достоинством подвесного агрегата заправки является размещение в обтекаемой гондоле всех основных элементов системы заправки, включая автономную энергетическую установку. Система заправки с использованием подвесных агрегатов позволяет переоборудовать практически любой однотипный самолёт в самолёт-заправщик при сравнительно небольшой его доработке, снабдить заправщик подвесными агрегатами для одновременной заправки нескольких летательных аппаратов, использовать самолёт для другие целей после снятия подвесных агрегатов. Системы заправки с подвесными агрегатами обеспечивают перекачку 1000—4600 л/мин, встроенные системы заправки — 1500—3000 л/мин.
Система заправки типа «телескопическая штанга» основана на использовании жёсткой телескопической штанги длиной до 17 м, шарнирно закреплённой одним концом на фюзеляже заправщика. На другие конце штанги расположены аэродинамические поверхности — оперение, с помощью которого оператор, находящийся на самолёте-заправщике, может управлять (в определенных пределах) положением штанги и наводить наконечник штанги на горловину приёмника топлива на заправляемом самолёте. При заправке по этой схеме самолёт подходит к заправщику, выдерживая определенную дистанцию и принижение, при этом лётчик заправляемого самолёта ориентируется по разметке на заправщике, строго сохраняя своё место в строю в процессе контактирования и заправки топливом. Занять нужное положение ему помогает оператор заправщика с помощью сигнальных огней или по радио. Оператор . может наблюдать за штангой и заправляемым самолётом через окно в нижней части фюзеляжа своего самолёта, а также на специальном пульте. Этап сближения самолётов и нахождение в строю заправки сложен для лётчика заправляемого самолёта и требует специальной систематической тренировки. Система заправки типа «телескопическая штанга» размешается стационарно на специализированных самолётах-заправщиках. Системы заправки этого типа обеспечивают перекачку топлива с подачей 4000—6000 л/мин.
Применяются также так называемая гибридная схема, в основу которой положена «телескопическая штанга» с коротким шлангом (4 м) и конусом на конце, и «крыльевая» схема. По этой схеме с крыла самолёта-заправщика выпускается шланг со стабилизирующим устройством на конце и заправляемый самолёт подстраивается к заправщику в строю «пеленг» с превышением над шлангом. Затем путём наложения консоли крыла на шланг и захвата его в специальный замок осуществляется контакт, после чего заправляемый самолёт занимает строй заправки.

Метки:, ,

Жидкостный ракетный двигатель (ЖРД) — ракетный двигатель, работающий на жидком ракетном топливе. Нашёл применение на различных ракетах и некоторых самолётах. По назначению различают ЖРД маршевые, корректирующие, рулевые, тормозные, стартовые, стабилизирующие, ориентационные. ЖРД бывают одно- и многократного использования, одно- и многократного включения, одно-, многорежимные и с регулируемой тягой.
ЖРД состоит из одной или нескольких основных камер, агрегатов подачи топлива, элементов автоматики, устройств для создания управляющих усилий и моментов, рамы, магистралей и вспомогательных устройств и агрегатов. Высокотемпературные газообразные продукты сгорания топлива, образующиеся в камере двигателя, разгоняются в реактивном сопле и истекают наружу, создавая реактивную тягу двигателя. Система подачи топлива ЖРД вытеснительная или насосная. В вытеснительной системе топливо подаётся в камеру путём вытеснения из баков газами, давление которых превышает давление в камере сгорания, в насосной системе подачи обычно применяется турбонасосный агрегат (ТНА). ЖРД с турбонасосными агрегатами бывают двух основных схем: без дожигания и с дожиганием генераторного газа а камере двигателя. ЖРД с дожиганием не имеют потери удельного импульса тяги, обусловленной приводом ТНА. В зависимости от назначения ЖРД могут иметь различные параметры; тягу — от десятых долей Н до несколько МН, удельный импульс тяги — примерно до 4,5 км/с для двух компонентных топлив и до 5 км/с для трехкомпонентных топлив.
Создание высокоэффективного надёжного ЖРД связано с решением ряда проблем. Необходимы рациональный выбор топлива и обеспечение совершенства рабочего процесса. Требуется устойчивая работа во всём диапазоне рабочих режимов без развития НЧ и ВЧ колебаний давления. Значительные трудности связаны с организацией охлаждения камеры двигателя, на которую воздействуют агрессивные продукты сгорания при температураx до 5000{{ }}К и давлениях до десятков МПа. Сложной задачей является создание надёжного турбонасосного агрегата для подачи топлива при давлениях до десятков МПа и расходах до нескольких т/с.
Схема ЖРД предложена К. Э. Циолковским в 1903. Первые ЖРД были разработаны и испытаны в США Р. Годдардом в 1922, в Германии Г. Обертом в 1929. Первые отечественные ЖРД ОРМ-1 и ОРМ разработаны и испытаны В. Л. Глушко в 1930—1931, ОР-2 и двигатель 10 разработаны и испытаны Ф. А. Цандером в 1931—1933. В 1942 лётчик Г. Я. Бахчиванджи совершил полет на первом советском реактивном самолете БИ с ЖРД тягой 10,8 кН. В 1943—1946 были проведены лётные испытания вспомогательного авиационного ЖРД, созданных под руководством Глушко. Во второй половине 40?х и в 50?е гг. за рубежом строились экспериментальные самолёты с ЖРД и опытные самолёты с комбинированными силовыми установками (ТРД + ЖРД). Однако широкого применения ЖРД в авиации не получил из-за большого удельного расхода топлива.

Метки:,

Горючее — компонент топлива, подвергающийся окислению в процессе сгорания в камере воздушно-реактивного двигателя или жидкостного ракетного двигателя. Эффективность Г. определяется теплопроизводительностью Г. и физическими свойствами продуктов сгорания (молярной массой, теплоёмкостью и др.). В качестве Г. применяются жидкий водород, углеводороды, спирты, амины, гидразин и его алкильные производные, лёгкие металлы и их гидридные и органические производные. Г. должно быть стабильным, иметь малую токсичность

Метки:,

Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) — прямоточный воздушно-реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от прямоточного воздушно-реактивного двигателя со сгоранием топлива в дозвуковом потоке в ГПВРД воздух тормозится в меньшей степени — до скорости, превышающей скорость звука. Степень торможения определяется главным образом условиями достижения максимальной эффективности и существенно зависит от режима работы двигателя и условий полёта — Маха числа M{{?}} и высоты полёта. Различают ГПВРД внутреннего и внешнего сгорания. Схематично ГПВРД внутреннего сгорания представляет собой тело с каналом переменный сечения, основные элементы которого (воздухозаборник, камера сгорания и реактивное сопло), выполняя те же функции, что и соответствующие элементы прямоточного воздушно-реактивного двигателя, имеют отличия, связанные со спецификой теплоподвода к сверхзвуковому воздушному потоку (рис. 1). Контуры ГПВРД внешнего сгорания образованы внешней поверхностью летательного аппарата и зоной теплоподвода, возникающей при подаче топлива в обтекающий летательный аппарат сверхзвуковой поток и сгорании топливовоздушной смеси (рис. 2). Сгорание смеси в ГПВРД обоих типов может происходить без сильных скачков уплотнения, переводящих сверхзвуковой поток на входе в сверхзвуковой поток меньшей скорости на выходе из зоны горения (ГПВРД с камерами постоянного сечения при малой степени теплоподвода и ГПВРД с расширяющейся камерой), или с сильными скачками уплотнения перед зоной теплоподвода (ГПВРД со стабилизацией горения на выступающих в поток плохообтекаемых телах или при любых способах стабилизации, но при большой степени теплоподвода). Предельная степень теплоподвода в камере, при которой перед ГПВРД появляется отошедшая ударная волна (или скачок уплотнения) и изменяется режим течения воздуха на входе, зависит от формы камеры сгорания (камера постоянного сечения, расширяющаяся или сужающаяся) и режима полёта. Для расширения диапазона работы ГПВРД без отошедшей волны в сторону меньших М{{?}} используется либо расширяющаяся камера, либо комбинированная, состоящая из участка с постоянной площадью поперечного сечения, в котором реализуется теплоподвод с торможением потока до звуковой скорости, и расширяющегося участка, реализующего теплоподвод при М{{?}}1. Значительное расширение диапазона работы ГПВРД может быть достигнуто применением так называемых двухрежимных прямоточных воздушно-реактивных двигателей (ДПВРД). работающих в начальном диапазоне М{{?}} на режиме дозвукового горения, а при больших М{{?}} — на режиме сверхзвукового горения, то есть при подводе теплоты к сверхзвуковому потоку (рис. 3). Переход с одного режима на другой в зависимости от конструкции ДПВРД может происходить автоматически или в результате переключения поясов подачи топлива.
Идеальным термодинамическим циклом ГПВРД является так называем цикл Брайтона с изменением процесса теплоподвода в зависимости от условий протекания процесса сгорания в камере — изобарический процесс в расширяющейся камере и процесс с ростом давления в камерах постоянного сечения и в сужающейся (рис. 4). Действительная работа цикла ГПВРД зависит от скорости полёта, степени и условий теплоподвода, степени торможения воздушного потока и уровня потерь в элементах двигателя.
В ГПВРД могут использоваться жидкие, твёрдые и гибридные топлива. Наибольшая эффективность (коэффициент полезного действия, тяга и т. п.) ГПВРД достигается при гиперзвуковых скоростях полёта (отсюда название). Соответственно и предполагаемая область применения ГПВРД; силовые установки гипёрзвукового летательного аппарата и ракет различного назначения при полётах в атмосфере с М{{?}} > 6.

Метки:, , ,

Газотурбинный двигатель (ГТД) — тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина. Рабочее тело (воздух) сжимается в компрессоре и после подвода теплоты расширяется в газовой турбине, отдавая ей часть энергии, необходимую для привода компрессора. Основная часть энергии нагретых газов используется для получения с помощью той же или дополнительной турбины полезной механической работы на валу двигателя, например, для вращения воздушного или несущего винта (турбовинтовой двигатель, турбовальный двигатель), или для увеличения кинетической энергии газов, создающих реактивную тягу (турбореактивный двигатель). Если нужно получить еще большую тягу, применяют вторичный подогрев этих газов в форсажных камерах сгорания для увеличения скорости истечения газов.
Авиационные ГТД имеют высокие технические показатели. Степень повышения давления в компрессорах достигает 30, а температура газов перед турбиной 1650{{ }}К и выше. Эффективный коэффициент полезного действия у лучших двигателей составляет в дозвуковом полёте 40—43 %, а при больших сверхзвуковых скоростях (Маха числа полёта М = 2,5—3) превышает 50%. Стартовая мощность турбовинтовых и турбовальных ГТД 100—10000 кВт, а стартовая тяга реактивных газотурбинных двигателей от несколько кН до 300 кН. Авиационные ГТД развивают на 1 кг массы в стартовых условиях 5—7 кВт мощности и 50— 80 H реактивной тяги (последнее значение — при использовании форсажных камер).
Начало применения газотурбинных двигателей в авиации относится к 1944. В 50—60?х гг. ГТД стал основным типом авиационного двигателя. ГТД применяются также на других видах транспортных аппаратов (автомобили, корабли и др.) и в различных установках (передвижные электростанции, агрегаты газоперекачки и др.). Часто для этих целей используются специальные модификации авиационных ГТД с пониженными параметрами.

Метки:,

Газообразное топливо — различные газообразные вещества, окисление которых сопровождается значительным выделением теплоты. Г. т. обладает рядом преимуществ перед жидкими и твёрдыми топливами. При сжигании газов не образуется золы. Основной недостаток Г. т. — малая плотность. К Г. т. относятся водород, лёгкие углеводороды (метан, пропан, бутан и др.), природный и попутный нефтяной газы и другие смеси в основном углеводородных газов. Г. т. значительно различаются по свойствам и теплотехническим характеристикам. Сжиженные водород, индивидуальные углеводороды (метан, пропан), природный и попутный нефтяной газы рассматриваются как возможные топлива для авиационных силовых установок.

Метки:,