Авиапедия

Энциклопедия Авиации

По алфавиту

Наши спонсоры

Герметизация — обеспечение непроницаемости стенок и соединений в деталях, узлах и агрегатах летательного аппарата для предотвращения утечек газов и жидкостей. Различают Г. полную и неполную. Выбор методов и технологии Г. на летательном аппарате определяется назначением детали, узла, конструкции, характером действующих нагрузок и предполагаемой деформацией соединения. Для Г. пористых деталей (например, литых) в основном применяют пропитку их герметиками, в том числе анаэробными. Г. деталей из композиционных материалов производят креплением к ним непроницаемых плёнок. Для Г. проёмов люков применяют прокладки, формуемые из герметиков (непосредственно по месту уплотнения) и из резины. На подвижных соединениях и вращающихся валах ставят сальниковые, лабиринтные и другие уплотнения. Для Г. металлических неразъёмных соединений часто используют сварку, пайку, развальцовку, расчеканку, а также создают в местах сопряжения деталей натяг. Г. соединений с точечным и прерывистым силовым швом производится герметизирующими составами, которые после нанесения на шов и вулканизации в рабочем состоянии обладают достаточной эластичностью, прочностью, хорошей адгезией, коррозионной стойкостью и способностью не разрушаться под действием рабочей среды. Герметизирующие составы — полимерные композиции на основе синтетических каучуков (полисульфидных, кремнийорганических, кремнийфторорганических, уретановых и др.). Г. большинства заклёпочных, болтовых и других соединений планёра самолёта обеспечивается герметизирующими составами. Существуют 3 основных метода Г.: поверхностный, внутришовный и комбинированный. Перед нанесением герметика необходимы тщательная очистка и обезжиривание поверхностей соединения.

Метки:, ,

Броня авиационная — средство защиты членов экипажа и жизненно важных узлов боевых летательных аппаратов от поражающих средств воздушного и наземного оружия. Впервые Б. а. была применена в Италии в 1911. После Первой мировой войны проблемой бронирования самолётов занимались конструкторы американских и немецких фирм. Эти попытки носили частный характер и не привели к кардинальному решению проблемы: броня оказывалась либо слишком тяжёлой, либо малоэффективной. В 20?х гг. авиаконструкторы США практически отказались от идеи бронирования самолётов. Новая попытка бронирования самолётов была предпринята в середин 30?х гг., когда С. В. Ильюшин приступил к разработке бронированного штурмовика.
Опыт воздушных боёв середины 30?х гг. показал, что возросшая огневая мощь истребителей обусловила значительные потери лётчиков, что потребовало их защиты, и к началу Второй мировой войны Б. а. в форме броневых спинок стала обязательным элементом боевых самолётов.
Важным этапом в истории Б. а. явилось создание С. Т. Кишкиным и Н. М. Скляровым гомогенной стальной брони марки АБ-1, сочетавшей высокую стойкость против пуль всех типов стрелкового оружия калибра 7,62 мм с весьма высокой технологичностью (закалка на воздухе и под штампом позволяла изготовлять детали двойной кривизны, сложных аэродинамических контуров). Используя свойства этой брони, Ильюшин создал штурмовик Ил-2 с цельно броневым фюзеляжем — «летающий танк», обеспечив практически полную его неуязвимость от стрелкового оружия того времени и в значительной степени от снарядов осколочного и фугасного действия.
Современная Б. а. рассматривается как элемент, повышающий боевую живучесть летательного аппарата. Различают следующие типы Б. а.: по конструктивному применению — входящая в силовую конструкцию и навесная (сюда же относятся и средства индивидуальной защиты членов экипажа — бронежилеты, броневые нагрудники, заголовники, шлемы); по типу поражающего средства — противопульная, противоснарядная, противоосколочная; последняя может быть двух типов: против элементов боевых частей ракет (упрощённо называемых осколками) и против собственно осколков, образующихся при действии поражающего средства на конструкцию летательного аппарата или на броню; по строению — монолитная (из цельной плиты) и составная (из набора отдельных плит); в тех случаях, когда в наборном парном пакете обусловлены определенное расстояние между плитами и свойства материалов (например, расстояние не менее длины снаряда и твёрдость лицевой плиты больше твёрдости материала снаряда при высокой вязкости тыльной плиты), Б. а. называется экранированной; при расстояниях между плитами в пакете больше двух длин снаряда (или другого поражающего средства) Б. а. относится к типу разнесённых боевых преград; по материалу — стальная, титановая, алюминиевая; при этом различается броня гомогенная, гетерогенная (цементованная, односторонне закалённая, односторонне отпущенная) и слоистая, то есть состоящая из двух или более слоев — (см. Многослойные металлические материалы); по размещению — наружная и внутренняя; стойкость последней определяется не только характеристикой самой брони, но и защитными свойствами обшивки и других элементов конструкции летательного аппарата, находящихся перед бронёй.

Метки:,

Автоматическое регулирование (синтез систем). Практически все этапы и режимы функционирования летательного аппарата сопровождаются (обеспечиваются) автоматическим регулированием. Регулируются как параметры полёта (в том числе координаты), так и параметры режима силовой установки, систем энергоснабжения, многочисленных других бортовых систем и агрегатов, включая систему жизнеобеспечения. Назначение систем автоматического регулирования (САР) заключается в исполнении (отработке) задающих воздействий в условиях помех (возмущающих воздействий). Задающие воздействия поступают от старших уровней системы управления, в том числе экипажа, или программируются заранее на стадии производства (монтажа) системы или её предполётной подготовки. От точности отработки задающих воздействий во многом зависят технико-экономические показатели и безопасность полётов. Поэтому качеству автоматического регулирования уделяется большое внимание. Используются все известные принципы регулирования: по отклонению (с обратной связью), по возмущению (с разомкнутым контуром), комбинированное (сочетание двух предыдущих принципов), адаптивное и др.
Одним из путей обеспечения достаточно высокого качества процессов регулирования является синтез САР на стадии проектирования. Синтез САР заключается в определении структуры и параметров (коэффициентов) системы, обеспечивающих заданные показатели качества регулирования. Синтез САР определенным образом связан с анализом САР и в простейшей форме может базироваться на анализе множества вариантов, задаваемых произвольным образом. Однако таким путём практически невозможно достигнуть оптимальных решений.
На всех этапах развития авиации и ракетно-космической техники для синтеза бортовых САР привлекались наиболее передовые для своего времени методы теории управления. На ранних этапах это были в основном методы теории устойчивости движения. Система «регулятор — регулируемый объект» проектировалась так, чтобы обеспечить устойчивость заданного состояния, на этом предварительный синтез заканчивался. В дальнейшем широкое распространение получили частотные методы синтеза САР — структурные динамические схемы контуров регулирования. САР рассматриваются как совокупность элементарных динамических звеньев однонаправленного действия, образующих взаимосвязанные или автономные контуры. Строгое обоснование частотный синтез имеет для так называем линейных систем. Для каждого элементарного линейного звена известны частотные характеристики, в том числе логарифмические частотные характеристики, правила определения частотных характеристик заданного соединения звеньев, а также критерии устойчивости и качества процессов регулирования, сформулированные в терминах частотных характеристик. На этой основе строятся инженерные методики синтеза контуров, широко применяемые и в 90?х гг. На базе этих методов обычно осуществляется предварительный синтез на начальной стадии проектирования САР. Последующие этапы синтеза выполняются с помощью электронно-вычислительных машин. В ходе математического, а на заключительной стадии и полунатурного (с реальной аппаратурой управления) моделирования уточняются структура и значения параметров синтезируемой системы, Процедуры синтеза посредством электронно-вычислительных машин во многом могут быть формализованы (автоматический поиск оптимальных структур и значений параметров) и являются основным направлением практического синтеза САР.
Начиная с 60?х гг. широкое развитие и применение получила современная теория управления, базирующаяся на описании процессов в так называем пространстве состояний. Качество управления, критерии оптимизации в этой теории задаются в виде функционалов, как и в классическом вариационном исчислении, Эта теория явилась основой решения задач синтеза САР как в детерминированной (аналитическое конструирование регуляторов), так и стохастической (вероятностной) постановке, как при полной, так и при ограниченной информации о математической модели регулируемого процесса (синтез оптимальных адаптивных САР). Современная теория объединяет в единое целое теории фильтрации (оценивания), идентификации и собственно регулирования. Она позволяет синтезировать как непрерывные, так и дискретные алгоритмы, удобные для реализации в цифровых вычислительных машинах.
В связи с совершенствованием и широким применением бортовых цифровых вычислительных управляющих систем, внедрением методов современной теории управления синтез бортовых САР всё больше трансформируется в разработку математического обеспечения. На эту разработку приходится всё большая доля затрат при создании перспективных систем.

Метки:, , ,

Авиация ПВО — один из основных и наиболее манёвренный род войск противовоздушной оборон. Состоит из истребительной авиации (ИА), специальной и транспортной авиации. Назначение ИА — уничтожение средств воздушного нападения (самолётов, крылатых ракет и т. д.) противника главным образом на дальних подступах к обороняемым объектам. Боевые задачи ИА решает во взаимодействии с другими силами и средствами противовоздушной оборон, а также с истребительной авиацией военно-воздушных сил. Части ИА входят в состав соединений противовоздушной обороны. Специальная и транспортная авиация предназначена для обеспечения боевых действий ИА, зенитных ракетных и радиотехнических войск противовоздушной обороны. Состоит из отдельных авиационных подразделений, оснащённых транспортными самолётами, самолётами специального назначения, вертолётами.
Возникновение и развитие А. ПВО связано с общим развитием авиации и форм ее боевого применения. В годы Первой мировой войны значительная часть ИА привлекалась для прикрытия крупных промышленных и административно-политических центров. Выполнение ИА этих специфических задач и предопределило зарождение А. ПВО. В 1916 в русский армии был сформирован отдельный авиационный дивизион в составе 3 истребительных авиационных отрядов (по 6 самолётов) для обороны Петрограда. В Великобритании было создано несколько специальных эскадрилий, организационно сведённых в «Крыло воздушной обороны страны». Во всех наиболее развитых странах Западной Европы разрабатывались способы и тактические приёмы прикрытия объектов, ведения воздушных боёв с целью предупреждения ударов с воздуха, сделаны первые шаги по организации взаимодействия ИА с другими средствами противовоздушной обороны.
В соответствии с декретом о создании регулярной Красной Армии в начале 1918 стали формироваться первые авиационн отряды в Петрограде. В короткий срок было создано авиационное прикрытие из 19 истребителей. Были сформированы истребительные авиационные отряды для обороны Москвы, Кронштадта и Тулы. В 1925 принято специальное постановление об укреплении противовоздушной обороны объектов государственного значения и крупных городов. В 1925—1930 на вооружение поступили первые отечественные самолёты-истребители И-2, И-3, И-4, И-5, вооруженные 7,62-мм пулемётами, имевшие скорость 220—280 км/ч, потолок до 7500 м. В 1933—1939 ИА противовоздушной обороны имела самолёты И-15, И-15бис, И-153 и И-16 со скоростью полёта 370—490 км/ч, потолком до 10700 м, с 12,7-мм пулемётами, 20-мм пушками и реактивными снарядами РС-82; с 1940 стали поступать истребители Як-1 и МиГ-3 со скоростями полёта 580 и 615 км/ч соответственно. Совершенствовались организационная структура А. ПВО, способы боевого применения и взаимодействия с другими средствами противовоздушной обороны. Тыловые объекты предусматривалось оборонять специально выделенными частями ИА противовоздушной обороны во взаимодействии с зенитной артиллерией, зенитными прожекторами и с использованием аэростатов заграждения.
До Великой Отечественной войны и в начале войны все соединения и части ИА входили в состав военно-воздушных сил, при этом некоторые из них выделялись для выполнения задач противовоздушной обороны объектов страны. Так, для прикрытия крупных городов в 1935 из военно-воздушных сил было выделено 29 эскадрилий (более 900 истребителей). К началу войны имелось 40 истребительных авиаполков противовоздушной обороны, насчитывавших около 1500 самолётов. Противовоздушную оборону Москвы обеспечивали 11 истребительных авиаполков (602 истребителя), Ленинграда — 9, Баку — 9, Киева — 4, Риги, Минска, Одессы, Кривого Рога, Тбилиси — по 1, Дальнего Востока — 2. Все 40 авиаполков в январе 1942 из военно-воздушных сил были переданы в состав войск противовоздушной обороны, что означало создание нового рода войск, — А. противовоздушной обороны.
В ходе Второй мировой войны на территориях воюющих государств значительные силы ИА привлекались для обороны важных районов и объектов. В Великобритании в интересах противовоздушной обороны было создано авиационное командование в составе 15 эскадрилий. Противовоздушная оборона Берлина возлагалась на авиадивизию (400—600 истребителей).
В годы Великой Отечественной войны А. ПВО СССР организационно состояла из воздушных истребительных армий, корпусов, дивизий, полков. Основные принципы боевого применения ИА противовоздушной обороны: массирование сил на главном направлении, централизация управления, чёткое взаимодействие с зенитной артиллерией. Получила дальнейшее развитие тактика А. ПВО. Разработана и успешно освоена тактика ведения групповых воздушных боёв составом авиаэскадрильи, авиаполка и несколько полков в простых метеорологических условиях. Успешно применялись действия авиаподразделений и частей из засад. Начали использоваться для наведения истребителей в сложных метеорологических условиях радиолокационные станции. Применение радиолокационных станций расширило возможности получения более точных данных о воздушной обстановке и обнаружения авиации противника на дальних подступах к обороняемым объектам. Шире стал применяться манёвр силами ИА противовоздушной обороны, что дало возможность прикрывать от ударов с воздуха целые районы и обширные зоны. Наряду с выполнением основных задач ИА противовоздушной обороны действовала и в интересах сухопутных войск Только ИА противовоздушной обороны Москвы с сентября 1941 по март 1942 выполнила свыше 26000 самолето-вылетов для нанесения штурмовых ударов по немецко-фашистским войскам и прикрытия войск Западного фронта. Основной боевой единицей была пара истребителей, а основным способом боевых действий — вылет из положения дежурства на аэродроме. Вместе с развитием тактики совершенствовались боевые порядки. Получило дальнейшее развитие планирование воздушного боя. В соответствии с замыслом боя определялись группы тактического назначения: ударная, прикрытия, отвлекающая и др.. Летчики-истребители ИА противовоздушной обороны были в числе первых, которые в Великую Отечественную войну применили таран как способ уничтожения самолётов противника, — А. С. Данилов, С. И. Здоровцев, П. С. Рябцев, П. Т. Харитонов (днём), В. В. Талалихин (ночью), А. Н. Катрич (высотный таран). Один из авиаполков (586?й истребительный) был женским. Этот полк прошёл боевой путь от берегов Волги до столицы Австрии — Вены. Лётчицы полка совершили 4419 боевых вылетов, провели 125 воздушных боёв и сбили 38 самолётов противника. Всего же за период войны лётчики ИА противовоздушной обороны сбили около 4000 самолётов противника, уничтожили на аэродромах 238 самолётов, 92 лётчикам было присвоено звание Героя Советского Союза, А. Т. Карпову — дважды. За годы войны самолётный парк ИА противовоздушной обороны обновился полностью. Истребители Лa-5, Як-3, Як-9, Ла-7. состоявшие на вооружении к концу войны, имели скорость полёта 600—720 км/ч и мощное пушечное вооружение. На 1 мая 1945 в А. ПВО насчитывалось 97 полков.
Для послевоенного развития А. ПВО характерно оснащение её реактивными самолётами, дальнейшее совершенствование системы управления, а также развитие специальной и транспортной авиации, В конце 40?х гг. А. ПВО вооружается реактивными истребителями МиГ-9, Як-15, в 50-е гг. —МиГ-15, -17, -19, Як-25 с бортовыми радиолокационными приборами и управляемыми ракетами класса «воздух—воздух». В 60-е гг. в состав А. ПВО поступают сверхзвуковые истребители Су-9, -11, -15, Як-28П, в последующие годы — новые поколения самолётов МиГ-25, -31, Су-27 с высокими лётно-тактическими характеристиками. Имея скорости полёта самолётов до 3000 км/ч, практический потолок более 20000 м, высокоэффективные системы вооружения, А. ПВО способна поражать малозаметные и малоразмерные цели в любых метеорологических условиях. Тактика А. ПВО строится на основе всестороннего учёта опыта Великой Отечественной войны и послевоенной практики, достижений и перспектив развития военной науки и техники. Шире стало взаимодействие А. ПВО с другие родами войск противовоздушной обороны, средствами противовоздушной обороны других видов Вооруженных Сил. Командующими А. ПВО были: И. Д. Климов (1942—1947), С. А. Пестов (1947—1948), Е. Я. Савицкий (1948—1953, 1954—1966), М. Г. Мачин (1953—1954), А. Л. Кадомцев (1966—1969), А. Е. Боровых (1969—1977), Н. И. Москвителев (1977—1987), Б. И. Андреев (с 1987).
А. ПВО в вооруженных силах стран НАТО и США представлена отдельными авиационными эскадрильями истребителей противовоздушной обороны. В зависимости от обстановки могут привлекаться значительные силы тактической авиации. На вооружении А. ПВО состоят истребители Макдоннелл-Дуглас F-15 «Игл», Дженерал дайнемикс F-16 (США), Панавиа «Торнадо» F.2 (Великобритания), «Мираж» F-1C, «Мираж» 2000 (Франция) и др. Управление истребителями противовоздушной обороны предусмотрено в единой автоматизированной системе управления средствами противовоздушной обороны «Нейдж». В целях повышения возможностей управления истребителями противовоздушной обороны используются также самолёты дальнего радиолокационного обнаружения и управления, входящие в систему «АВАКС—НАТО» (американский самолёт Боинг Е-3А).

Метки:, , ,

авиационно-химические работы (АХР) — защита растений от вредителей и болезней, внесение минеральных удобрений, борьба с сорной растительностью, дефолиация (удаление листьев) и десикация (ускорение созревания) сельскохозяйственн культур и лесных насаждений с помощью самолётов и вертолётов, оборудованных аппаратурой для опрыскивания жидкими химикатами или для разбрасывания удобрений и опыления сыпучими химикатами. АХР проводятся в ограниченные сроки, лимитируемые метеорологическими и агротехническими условиями. В России для АХР используются лёгкие самолёты (Ан-2 и другие) и вертолёты (Ми-2, Ка-26 и другие) сельскохозяйственной авиации. АХР проводятся на малых высотах (5—50 м), как правило, рано утром (до появления восходящих потоков воздуха и усиления ветра) и вечером (с момента прекращения указанных явлений).
Авиационный способ внесения химикатов по технической, хозяйственной и экономической эффективности не уступает наземному, а по таким показателям, как производительность труда, возможность обработки на влажной почве без уплотнения и разрушения её структуры и повреждения растений, значительно превосходит его.
Ежегодно АХР в СССР в 80?х гг. проводились на площади более 100 миллионов га.

Метки:, , ,

Авиационное происшествие — событие, связанное с использованием воздушного судна, которое имело место с момента, когда какое-либо лицо вступило на борт с намерением совершить полёт, до момента, когда все лица, находившиеся на борту с целью полёта, покинули воздушное судно, и обусловленное нарушением нормального функционирования воздушного судна, экипажа, служб управления и обеспечения полётов, воздействием внешних условий, в результате которого наступило одно из последствий: хотя бы один человек из находившихся на борту погиб или его здоровью был причинён ущерб, повлёкший смерть в течение 30 суток с момента происшествия; воздушное судно получило повреждения силовых элементов планёра или совершило посадку на местность, эвакуация с которой является технически невозможной или нецелесообразной; хотя бы один человек из находившихся на борту пропал без вести и официальные поиски его прекращены.
К А. п. не относятся: гибель кого-либо из находившихся на борту воздушного судна в результате естественных причин, умышленных действий самого потерпевшего или других лиц, не связанная с функционированием воздушного судна; гибель какого-либо лица, самовольно проникшего на воздушное судно и находившегося вне зон, куда открыт доступ пассажирам; локализованное разрушение двигателя, если повреждён только сам двигатель, повреждение воздушных винтов, несиловых элементов планёра, обтекателей, законцовок, стёкол, антенн и других выступающих деталей, пневматиков и тормозных устройств шасси и других элементов, если эти повреждения не нарушают общей прочности конструкции; разрушение или повреждение элементов несущих и рулевых винтов, втулки несущего или рулевого винта, разрушение или рассоединение трансмиссии, разрушение вентиляторной установки, редуктора, если эти случаи не привели к повреждениям или разрушениям силовых элементов фюзеляжа (балок); повреждение обшивки фюзеляжа (балок) без повреждения силовых элементов.
А. п. в зависимости от тяжести наступивших последствий подразделяются на катастрофы и А. п. без человеческих жертв.

Метки:, , ,

Аварийный барьер — устройство, устанавливаемое на палубе авианесущего корабля для торможения корабельного самолёта при посадке в аварийных условиях в случае невозможности использования аэрофинишёра, например, при неисправности тормозного крюка, невозможности повторения захода на посадку из-за недостатка топлива, возникновении аварийной ситуации на борту самолёта. Обычно А. б. представляет собой сеть, натянутую поперёк посадочной палубы и состоящую из ряда вертикально расположенных прочных эластичных лент, прикреплённых нижними концами к одному из тросов автофинишера (обычно последнему), а верхними — к дополнительному тросу, натянутому над указанным тросом автофинишеру на высоте 5—6 м и связанному своими концами с тросом автофинишера. Дополнительный трос поддерживается на двух вертикальных стойках (пиллерсах), которые в нерабочем положении убираются в углубления в палубе. При посадке с использованием А. б. самолёт захватывает консолями крыльев эластичные ленты и вытягивает связанный с ними трос автофинишера, преодолевая сопротивление его тормозного механизма, что обеспечивает остановку самолёта.
Аналогичные конструкцию и принцип действия имеют аэродромные задерживающие устройства (см. рис.), предназначенные для предотвращения выбега самолёта за конец взлетно-посадочной полосы в случае неудачной посадки или нерасчётного прерванного взлета

Метки:, ,

аварийно-спасательное оборудование бортовое — совокупность средств на летательном аппарате, предназначенных для предотвращения травмирования пассажиров и экипажа и обеспечения возможности их аварийной эвакуации и спасения в случае вынужденной посадки самолёта или вертолёта на сушу или воду. В А.-с. о. включаются также отдельные элементы конструкции фюзеляжа и кабин летательных аппаратов. А.-с. о. состоит из средств фиксации людей, аварийных выходов для пассажиров и экипажа, средств маркировки, системы наружного и внутреннего аварийного освещения, систем связи и оповещения пассажиров, вспомогательных средств для эвакуации людей на землю. При полётах над водным пространством А.-с. о. дополняется индивидуальными и групповыми спасательными плавсредствами.
К средствам фиксации людей относятся кресла, привязные ремни и др. устройства, предотвращающие возможность удара человека о внутрикабинные конструкции и оборудование при вынужденной посадке летательного аппарата. В качестве аварийных выходов для пассажиров используются пассажирские и служебные двери, специальные люки, обычно располагающиеся над крылом самолёта, а для экипажа — также форточки в остеклении пилотской кабины. Средства маркировки в виде световых табло и надписей-трафаретов предназначаются для обозначения расположения аварийных выходов, указания направления движения к ним, способов их открытия, обозначения месторасположения отдельных элементов А.-с. о. и указания методов их использования. Система наружного и внутреннего аварийного освещения обеспечивает приемлемые условия для аварийной эвакуации людей в тёмное время суток. С помощью системы связи осуществляется обмен информацией между экипажем в пилотской кабине и бортпроводниками в пассажирских салонах, а по системе оповещения пассажиры получают указания по выполнению необходимых действий для эвакуации и спасения в аварийной ситуации. При расположении аварийных выходов на высоте более 1,8 м от поверхности земли для спуска людей из летательного аппарата предназначаются автоматически вводимые в действие надувные трапы (рис. 1), комбинированные трапы-плоты (рис. 2), аварийные лебёдки, канаты и т. п. К индивидуальным спасательным плавсредствам относятся надувные жилеты спасательные, подушки с постоянной плавучестью или другие спасательные средства, обеспечивающие поддержание человека на плаву в воде после эвакуации из приводнившегося летательного аппарата. Групповые спасательные плавсредства (плоты надувные, комбинированные трапы-плоты) обеспечивают поддержание на плаву вне воды и защиту от неблагоприятного воздействия гидрометеоусловий группы людей.
Число, расположение и размеры (типы) аварийных выходов для пассажиров, ширина проходов к ним, устройство аварийных выходов и средств их открытия, исполнение маркировки, уровень освещённости кабин и прочие определяются требованиями Норм лётной годности в зависимости от максимального числа и расположения пассажирских мест в кабинах летательных аппаратов. В соответствии с этими требованиями комплекс А.-с. о. должен быть выполнен таким образом, чтобы в условиях испытаний обеспечивалась возможность эвакуации всех людей из летательного аппарата на землю в течение не более 90 с при использовании аварийных выходов только с одного борта фюзеляжа или половины всех равноценных аварийных выходов.

Метки:, , ,

Абляция (от позднелатинского ablatio — отнятие, устранение) — унос массы с поверхности твёрдого тела потоком набегающего газа в результате оплавления, испарения, разложения и химической эрозии. Абляционные теплозащитные материалы применяются в конструкции летательных аппаратов. А. сопровождается поглощением теплоты, и это предохраняет конструкцию от перегрева и разрушения; используется в основном при полёте с гиперзвуковыми скоростями, когда существенно аэродинамическое нагревание.
А. композиционных материалов, например, стеклопластиков, сопровождается термическим разложением связующего с образованием газообразных продуктов и кокса, плавлением наполнителя и образованием на внешней поверхности покрытия жидкой плёнки, испарением расплава, химическим взаимодействием образовавшихся веществ друг с другом и с внешним потоком, обтекающим летательный аппарат, механическим разрушением кокса, уносом твёрдых частиц кокса и капель расплава, излучением (см. Радиационный тепловой поток) с внешней поверхности теплозащитного покрытия. Газообразные продукты
А., поступая в пограничный слой, охлаждают и утолщают его, что приводит к уменьшению теплового потока к поверхности теплозащитного покрытия.
Значительно проще протекает А. однородных теплозащитных материалов. Например, при А. графита образуются только газообразные продукты; при температуре поверхности свыше 3300 К существенную роль приобретает его сублимация. При А. термопластичных полимеров (полиэтилена, органического стекла и др. ) они разлагаются и целиком переходят в газовую фазу; излучение при этом не играет существенной роли из-за относительно невысокой температуры их разложения (700—800 К).

Метки:, , ,